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1 Introduction

An incidence theorem states that geometric objects obtained in different ways coincide. Ba-
sically, such incidence may occur in three cases:

(S) the geometric construction admits some discrete symmetry. For example, “the medians
of a triangle are concurrent” ⇔ “pairwise intersections of medians coincide” ⇔ “intersection of
two medians is invariant with respect to the action of S3 on the vertices”;

(R) the geometric construction admits a reduction on some submanifold;
(C) the geometric construction can be self-consistently iterated in accordance with some

prescribed combinatorics.

Several examples are presented below. Mainly we are interested in (C) with the combinatorics
of the cube or hypercube.
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Recall, that accordingly to [2, 3], a m-dimensional partial difference equation F [x] = 0,
x : Zm → X, is called (m + 1)D-consistent if it can be imposed without contradictions on each
m-dimensional sublattice in Zm+1. Assume that this equation can be interpreted as a geometric
construction which defines some elements of a figure by the other ones. Then the consistency
means that some complex figure exists which contains several copies of the basic one.
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[2] F.W. Nijhoff, A.J. Walker. The discrete and continuous Painlevé hierarchy and the Garnier
system. Glasgow Math. J. 43A (2001) 109–123.

[3] A.I. Bobenko, Yu.B. Suris. Integrable systems on quad-graphs. Int. Math. Res. Notices 11
(2002) 573–611.
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2 Quadrilateral lattices on the plane

Definition 1. The mapping x : Z3 → RPd, d > 2 is called quadrilateral lattice, if the image of
each unit square is a planar quadrilateral.

Theorem 1 ([4]). The mapping x is 4D-consistent.

The quadrilateral lattice is a very general object which admits numerous reductions: circular
lattices, discrete analogues of orthogonal coordinates, discrete asymptotic nets, discrete isothermic
surfaces and so on (see e.g. [5, 6] and references therein).

Here we are interested in the case d = 2 when Definition 1 becomes senseless. The correct
one (that is, preserving the 4D-consistency) is the following:

Definition 2. The mapping Z3 → RP2 is called quadrilateral lattice on the plane, if it is a projection
of some quadrilateral lattice in space.

However, this definition is not too constructive. The intrinsic description is based on the
following theorem.

[4] A. Doliwa, P.M. Santini. Multidimensional quadrilateral lattices are integrable. Phys. Lett.
A 233 (1997) 265–372.

[5] A. Doliwa. Asymptotic lattices and W-congruences in integrable discrete geometry. J. of
Nonl. Math. Phys. 8 (2001) 88–92.

[6] A.I. Bobenko, Yu.B. Suris. Discrete differential geometry. Consistency as integrability.
math.DG/0504358.
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Theorem 2. Consider a combinatorial cube on the plane. If, for some pair of the opposite faces,
the corresponding edges meet on a straight line, then the same is true for any other pair.
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Theorem 2. Consider a combinatorial cube on the plane. If, for some pair of the opposite faces,
the corresponding edges meet on a straight line, then the same is true for any other pair.

Proof. Collinearity of one quadruple of the intersection points allows to construct a combinatorial
cube in space, with planar faces, for which our figure is a projection. For such a figure, edges
meet on the intersections of 3 pairs of the planes.

Theorem 2 is of the type (S), with the symmetry group of the cube acting on initial data.
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Remark. Actually, the symmetry of the whole figure is even more rich. Namely, 8 vertices of the
cube + 12 intersection points and 12 sides + 3 lines of intersections form a regular configuration
with the symbol (203154). This configuration is mentioned in [7], in connection with the following
statement (equivalent to Theorem 2):

Let 3 triangles be perspective with the common center. Then 3 axes of perspective
of 3 pairs of triangles meet in one point.

[7] F. Levi, Geometrische Konfigurationen, Leipzig: 1929, pp. 143, 202.
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Definition 3. The mapping Z3 → RP2 is called quadrilateral lattice on the plane, if the image of
any unit cube is the figure described in the Theorem 2, that is, the images of the corresponding
edges of any pair of the opposite faces meet on a straight line.

Collinearity of 4 intersection points is the condition, which allows to construct any vertex of
the combinatorial cube by the other ones. This defines the mapping (RP2)7 → RP2. Let
X, X1, . . . , X23 be given, then X123 is defined by

(1)
A = XX1 ∩X3X13, B = XX2 ∩X3X23

A′ = X2X12 ∩AB, B′ = X1X12 ∩AB

X123 = A′X23 ∩B′X13.

Theorem 2 means that the result is invariant with respect to the permutations of the subscripts.

Corollary 3. The mapping (1) is 4D-consistent.

Proof. This follows from the Theorem 1 and the proof of the Theorem 2.
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3 Double cross-ratio equation

Quadrilateral lattice on the plane admits the reduction to a conic section C, that is, if the
points X, X1, . . . , X23 lie on C then the point X123 defined by eqs (1) lies on C as well.

X1

X

X2

X12

X13
X3

X23
X123

A

B
A’

B’

The rational parameters x of the points X on the conic satisfy the double cross-ratio equation,
or discrete Schwarz-BKP [8]

(x− x12)(x13 − x23)
(x12 − x13)(x23 − x)

=
(x123 − x3)(x2 − x1)
(x3 − x2)(x1 − x123)

.

[8] B.G. Konopelchenko, W.K. Schief, Reciprocal figures, graphical statics and inversive geom-
etry of the Schwarzian BKP hierarchy. Stud. Appl. Math. 109:2 (2002) 89–124.
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This reduction is a particular case of Möbius theorem on inscribed polygons.

Theorem 4 (Möbius). Let X1, Y1, . . . , XN , YN be points on a conic. Consider the intersection
points Aj = XjXj+1 ∩ YjYj+1, j = 1, . . . N − 1 and

AN =
{

XNY1 ∩ YNX1 if N = 2n + 1,
XNX1 ∩ YNY1 if N = 2n.

If all of these points except possibly one are collinear then the same is true for the remaining
point.
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[9] F.A. Möbius, Verallgemeinerung des Pascal’schen Theorems das in einen Kegelschnit
beschriebene Sechseck betreffend. J. Reine Angew. Math. 36 (1848) 216–220.
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4 Hietarinta equation

Consider one more, very similar, analog of Pascal theorem.

O1

X2

E2

X12

E1

X1

O2

X

A’ A
B’B

Theorem 5. Let X, X1, X2 and O1, O2, E1, E2 be points on a conic C. Then the point X12

defined as follows lies on C as well.

(2)

A = XO1 ∩X1E
1, B = XO2 ∩X2E

2

A′ = X2O
1 ∩AB, B′ = X1O

2 ∩AB

X12 = E1A′ ∩ E2B′.
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The corresponding values of the rational parameter on C are related by equation

(3) (x, e2, x1, o
1, x12, o

2, x2, e
1) = 1

introduced by Hietarinta in the recent paper [10]. Here brackets denote multi-ratio (a, b, c, d, . . . ) =
(a − b)/(b − c) · (c − d)/ . . . . (The ordering of its arguments is obtained from the ordering in
octagon XO1X2E

2X12E
1X1O

2 by skips over two vertices.)
The values ei, oi are parameters of the equation, associated to the edges of the square lattice.

Theorem 6. Equation (3) is 3D-consistent, that is, the mapping x : Z3 → CP1 governed by
equation

(x, ej , xi, o
i, xij , o

j , xj , e
i) = 1

for any 2-dimensional sublattice is correctly defined.
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[10] J. Hietarinta. A new two-dimensional lattice model that is “consistent around a cube”. J.
Phys. A 37:6 (2004) L67–73.
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5 Yang-Baxter mappings on the linear pencils of conics

Our last example is 3D-consistency on the edges of a cube.

Let X1, X2 be points on the conic sections C1, C2 respectively.

C1

C2

12
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The mapping F12 : C1 × C2 → C1 × C2 is defined as follows:

X12 = X1X2 ∩ C1, X21 = X1X2 ∩ C2

sc
sc

sc
sc

C1

C2

1
12

2

21
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Consider the initial data on three conics from the linear pencil.

C1

C2

C3

12
3
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Consider the initial data on three conics from the linear pencil.

Apply the mappings Fij : (Xi, Xj) 7→ (Xij , Xji).

C1

C2

C3

1
12

13

2

21

23

3

31

32



5 Yang-Baxter mappings on the linear pencils of conics 20

Consider the initial data on three conics from the linear pencil.

Apply the mappings Fij : (Xi, Xj) 7→ (Xij , Xji).
Apply the mappings once more. Let Fij : (Xik, Xjk) 7→ (Xikj , Xjki).

Theorem 7. The mappings Fij are 3D-consistent: Xijk = Xikj .
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12 points and 6 lines can be identified with the edges and the faces of a cube. 3D-consistency
with this combinatorics is actually equivalent to the notion of Yang-Baxter maps [11, 12].
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[11] V.G. Drinfeld. On some unsolved problems in quantum group theory. Lect. Notes in Math.
1510 (1992) 1–8.

[12] A.P. Veselov. Yang-Baxter maps and integrable dynamics. Phys. Lett A 314 (2003) 214–221.
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Under a rational parametrization of the conics Ci : Xi = Xi(xi) the mapping F12 turns into a
birational mapping on CP1 × CP1. There exist 5 projective types of the linear pencils of conics
Ci = C + aiK [13]. These types lead to the following list of the mappings [14] (i, j ∈ {1, 2}):

xij = aixj
(1− a2)x1 + a2 − a1 + (a1 − 1)x2

a2(1− a1)x1 + (a1 − a2)x2x1 + a1(a2 − 1)x2

xij =
xj

ai
· a1x1 − a2x2 + a2 − a1

x1 − x2

xij =
xj

ai
· a1x1 − a2x2

x1 − x2

xij = xj

(
1 +

a2 − a1

x1 − x2

)
xij = xj +

a1 − a2

x1 − x2

The first one corresponds to the above figures with 4-point locus.

[13] M. Berger. Geometry. Springer-Verlag, Berlin 1987.
[14] V.E. Adler, A.I. Bobenko, Yu.B. Suris. Geometry of Yang-Baxter maps: pencils of conics

and quadrirational mappings. Comm. Anal. and Geom. 12:5 (2004) 967–1007.
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